
To give an example it can be shown that for a vortex chamber investigated in 
[7] with R K = 12.5 mm, r c = 1.6 mm, h = 15 mm, k = 1.8 the quantity ~A = 0.187 is 

~40 times smaller than the overall resistance coefficient ~ = 7.95 [2]. 

NOTATION 

r, x, ~, coordinates; v, w; V, W, radial and circular velocity components for 
the boundary layer or the main flow, respectively; p, pressure; 9, density; 9T, tur- 
bulence analog of kinematic viscosity coefficient; 6, thickness of boundary layer. 
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EFFECT OF RADIATION ON THE SUPERSONIC FLOW OF A VISCOUS 

IONIZED GAS PAST BLUNT BODIES 

L. B. Gavin UDC 533.6.011 

The supersonic flow of a viscous monatomic ionized gas past blunt bodies 
is investigated. The effect of radiation on the field of flow and on the 
heat flux transmitted to the wall is shown. 

When a gas flows past a blunt body at supersonic speed, the presence of the 
high temperatures that arise in the wake of a shock wave leads to changes in the 
physicochemical properties of the gas because there is excitation of the internal 
degrees of freedom of the molecules, dissociation, ionization, and radiation. De- 
pending on whether the time taken by these processes is comparable to the charac- 
teristic time of flow in the shock layer or is much shorter, the conditions of flow 
past the body will be nonequilibrium or equilibrium conditions. In the first case 
we must consider the actual kinetics of the nonequilibrium processes. 

The flow of a monatomic nonequilibrium-ionized radiating gas in a shock layer 
was considered in [1-4], but only in the ideal-gas model. In [5] the case of flow 
of a viscous nonequilibrium-ionized gas was analyzed without taking account of ra- 
diation. 

In the present article we investigate the flow of argon past blunt bodies, with 
the following ionization reactions taking place in the gas: 

A~M-~A*-~-M, A*~, M:~A++M~e, (1) 

A - ?  hv-~-- A § + e, ( 2 )  

where A, A* denote the atom in the ground state and an excited state; A + denotes a 
singly charged ion; e denotes an electron; hv denotes a photon; M is A or e. 
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The rates of the collision reactions (I) involving an excited level are given 
in [3], and the rate of reaction (2), which describes ionization from the ground 
level, is given in [6]. 

The initial system of equations describing the flow of a viscous heat-conduct- 
ing constant-temperature nonequilibrium-ionized radiating gas includes the equations 
of continuity, motion, energy, and state, and also the relaxation equation for the 
rate of ionization and the radiation-transfer equation. 

In order to solve the problem, these equations are written in a coordinate sys- 
tem related to the body and are transformed in the framework of a known model for a 
thin shock layer [7]. Neglecting the change in pressure across the layer, taking 
account of the ambipolar character of the diffusion, and considering the radiation- 
transfer equation in the plane-layer approximation, we arrive at the following sys- 
tem of equations: 

0 0 
(rpu) + ~ (roy) = O, (3) 

au au _ dp , O (~ au ),  (4) 
pU-~x + o r  Oy dx ' Oy Oy ] 

o . - : -  + ,o~, 
ox ( Oy 0!t 9DA + m~ (h~ + n~ + nR), (5) 

a~ \ E l /  dy 

p = 9RT (1 @ a), 

cos 0 dl~ = 9 (1 - -  ~) • (S,~ - -  1~). 
@ 

(6) 

(7) 

(8) 

In (8) 0 is the angle between the y axis and the direction of propagation of the 
photons, and Sv is the source function, 

(z 2 1--CZE B~,(T). ( 9 )  

Under equilibrium conditions the degree of ionization is ~ = aE, i.e., is given by 
the Saha equation, and the source function (9) reduces to the ordinary Planck func- 
tion. 

As boundary conditions on the shock wave (it is assumed that the shock wave is 
a surface of discontinuity of the gasdynamics parameters) we use the Rankine-Hugo- 
noit relations, supplemented by the condition for the degree of ionization, ~s = a~ 
for nonequilibrium flow and ~s = ~E(Ts, P) for equilibrium flow. On the body u = 0, 
v = 0, T w = const, ~w = ~E(Tw, P). 

In order to find the solution of the radiation-transfer equation on the basis 
of the plane-layer model, we must impose two conditions. The gas in front of the 
shock wave is slightly heated, and we therefore assume that it does not emit any ra- 
diation, i.e., 

z~ : o, (io) 

and on the body we use the radiant-energy balance as a boundary condition: 

I~ + = 6B~ (T~) ~ (1 - -  6 ) / ~ ,  (ll) 

where ~ is the coefficient of blackness of the surface of the body. 
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As the first step in obtaining the solution in the entire subsonic region, we 
consider the flow in a neighborhood of a critical point. In this case we assume 
that all the dependent variables except the tangential component of velocity u = 
ul(y)x, the quantity r = x, and the pressure determined by Newton's formula are 
functions of a single variable y [7]. Then the system (3)-(8) reduces to a system 
of ordinary differential equations. 

We introduce the variable n and express ul and v in terms of f(n): 

Y 

�9 ~ = V - ~  pd9, u~ 01), v - : ( n ) - - .  
, 2 L L dn 
0 

(12) 

Now we change to dimensionless coordinates: 

= _ _  - u~L p p ~. R T  - v . 1 =  ? = - - ,  ?== 5 , = o , 
v v . '  T Z '  p~ p . v .  v-~ 

f - q n -  qn g = ~_~_, 'P df r 
p . v ~  ' n~ = --d-~' ~ (~) = .  

0 

(13) 

Finally, Eqs. (4)-(6) in a neighborhood of a critical point take the form (we have 
omitted the bar above the dimensionless quantities) 

12 d ( l  dqo)__~p dqo ' r 4 ( l _ _ k ) ~ O ,  (14) 
ns d~ . ~ at 2 ,o 

1 d ( l  d _ ~ ) . - & z  , m~ (na.:_nea_i. nn)___O ' ( 1 5 )  

l d ( t  d r )  1 t 2 ' - i - ( 1 - : a ) ~ P  dT , &z aT 
~]s d~ Pr d~ d~ ,12s Sc d~ d~ 

) - -  " ' " - - n n ) - -  2 dgn 2 T tna(naa--ne,  ~ ~p(1) : - ' 0  
- r+y j ,o ' ] -  d~ (16) 

with the following boundary conditions: 

:= 0 : r .= 0, a -- a~, T ::= Tw; 

~ = 1 : ~ = 2 ,  r = %, T = Ts; 

(17) 

(18) 

here 

l = pvlp~p.~, Pr  := 5R~!2%, Sc ~ ,ulpDa. (19) 

In order to solve the system of equations, we must know l, Pr, Sc, i.e., the 
transfer coefficients, as functions of the thermodynamic parameters of the gas. In 
most calculations the transfer coefficients were determined by the simplest classi- 
cal theory [8]. 

In [5] ~ and X were first calculated to high degrees of approximation, accord- 
ing to [9, I0], for the case of nonequilibrium flow, and estimates were given for 
this correction to the field of the flow and the convective flux transmitted to the 
wall for the case of flow past blunt bodies disregarding radiation. In the present 
article we investigate the effect that taking account of the transfer coefficients 
in higher approximations produces both on the convective and on the radiant heat 
flux. 
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Fig. i. Profiles of the degree of ionization (a) for nonequilibrium 
(la, 2a) and equilibrium (3a, 4a) conditions and the radiant heat 
flux (b) in the shock layer for M~ = 20 (la, 3a, Ib). M~ = 22 (2a, 
4a, 2b); p~ = 50 n/m 2, T= = 300~ ~ = 10-3,L = 0.06 m, Tw = 
2000~ (~, ~ are dimensionless quantities, qR has the dimensions 
of kW/m2). 
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Fig. 2. Profiles of temperature (i, 2) and density (3, 4) in the 
shock wave, with radiation taken into account (i, 3) or disregard- 
ed (2, 4): a) for M~ = 22, p~ = 50 n/m 2, T~ = 300~ ~ = i0 -3, 
L = 0.06 m, T w = 2000~ b) for M~ = 38, p~ = i00 n/m 2, T~ = 
300~ a~ = i0 -3, L = 0.2 m, T w = 2000~ (RT/V~, 0/p~, ~ are di- 
mensionless quantities). 

The expression for the spectral flux of radiant energy, obtained in the plane- 
layer approximation for the case ~ = I, neglecting radiation from the surface of the 
body because of its low temperature, has the form 

qRv (T,) :: 2:~ i S,Eo_ (% - -  t,.) dt~ - -  2.~ .i S,E.,. (t, - -  T,) dr,., 
0 1%, 

<20) 

Ea(z)= [~ , -2exp ( - -wz )d~ ,  % =  t p(1- -a)z ,@,  %=~jm~.  
i b' 

(2i) 

In calculating the integrated flux q R : - j q R , . d v  we make a step-function approxima- 
vj 

tion to the coefficient of absorption with respect to the frequency, making use of 
the experimental value of the cross section of photoionization from the ground state, 
oj = 34 �9 I0 -Is cm 2 , according to the data of [Ii]. 

Some results of the calculations are shown in Figs. I, 2a (nonequilibrium con- 
ditions) and Figs. 2b and 3 (equilibrium conditions)~ The solution was found by the 
factorization method, using two iterations, on the BESM-4 electronic digital computer 
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Fig. 3. Heat flux transmitted to 
the wall as a function of the 
blunting radius: i) convective, 
disregarding radiation, 2) con- 
vective, with radiation taken in- 
to account, 3) radiant; M~ = 38, 
p~ = i00 n/m e , T~ = 300=K, ~ = 
10-3, Tw = 2000=K (qw, kW/m2, L, 
m). 

TABLE i. Radiant Heat Flux Transmitted to the Wall, 
qRw in kW/m 2, and Maximum Value of qR in the Shock 
Layer, qRm in kW/m 2 

Method of calculation 
of the tranfer coeffi- 

.ci,~n_ts 

l=1, Pr=2/3, Sc'---1 

Method of Calculation 
qRm of the tranfer coeffi- 

cients 
qRw q~ 

109,6 132,9 /xl, ~'2 [9, 10] 108,0 143,9 

Aceording to [8] 112,4 147,1 txz, ~a [9, 10] 148,3 113,4 

~m 

Internal iterations were used for determining the energy from the shock wave, and 
external iterations were used for correcting the radiation terms. 

Figure i shows the distribution of ~(~), ~E(E), and qR($). It can be seen that 
as M~ increases, the relaxation region contracts to the wave and the flow approaches 
equilibrium flow and that when there is motion across the shock layer, the radiant 
flux changes sign, carrying away energy through the shock wave upward along the flow 
and to the body. There is partial screening of the radiant flux by the region near 
the wall. As M~ increases, the minimum and maximum values of qR increase in value, 
and so does qRw. The quantity qRw represents an increasingly large part of the cor- 
responding convective flux. For example, for M~ = 20 and 22 the convective and ra- 
diant fluxes transmitted to the wall are equal, respectively, to 6372 and 307 and 
13,750 and 1432 kW/m 2. 

Figure 2a shows the profiles of the dimensionless temperature and density in 
the shock layer for gas flow taking account of radiation and disregarding radiation. 
There is a sharp drop in temperature near the shock wave because the rate of the re- 
actions in this region is very high (Fig. la), causing large losses in the energy of 
the gas. It can be seen that when radiation is taken into account, there is a de- 
crease in temperature and a corresponding increase in density in a large part of the 
shock layer; this is due to the cooling of the gas as a result of the removal of ra- 
diant energy. 

Figure 2b shows the profiles of the dimensionless temperature and density in 
the shock layer for conditions corresponding to equilibrium flow past the body. In 
this case the shock wave becomes optically denser than in the nonequilibrium case. 
While in most of the shock layer the radiant cooling leads to a drop in temperature, 
the temperature in the region near the wall increases because the radiant energy is 
absorbed more intensively than in the nonequilibrium case. 

Figure 3 shows how the convective and radiant heat fluxes transmitted to the 
wall vary with the blunting radius. If radiation is disregarded, the convective 
flux decreases as L increases. If the radiation is taken into account, there is a 
substantial increase in the convective flux because the temperature near the wall 
rises, and so the behavior of the flux as L increases is nonmonotonic. It can be 
seen that under these conditions the radiant flux amounts to a substantial fraction 
of the corresponding convective flux. 

In our study we also made an estimate of the effect produced on the radiant 
flux qR by transfer coefficients calculated to higher approximations. In calculat- 
ing ~I, ~2, ~2, ~, we used the interaction potentials for partially ionized argon 
according to [9, I0]. As an example, we show in Table I the results obtained by 
calculating qRw and qRm for M~ = 18, p~ = I00 n/m 2, T~ = 300~ ~ = 10 -3, L = 0.04 
m, Tw = 2000~ 
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The radiant heat flux is an integral function of the distribution of the gas- 
dynamics parameters in the shock layer, and therefore, as was to be expected, there 
is smoothing of qR for different methods of calculating the transfer coefficients, 
resulting in a slight difference in qRw and qRm, 

NOTATION 

A, A*, atom in ground state and excited state; A +, singly charged ion; x, y, 
coordinates; u, v, components of velocity along the x and y axes, respectively; r, 
distance from the axis of symmetry of the body; $, dimensionless coordinate across 
the shock layer; V~, M~, gas velocity and Mach number in the incoming flow, respec- 
tively; p, p, T, ~, pressure, density, temperature, degree of ionization of the gas, 
respectively; ~E, equilibrium degree of ionization; h = (5/2)RT(I + a) + aRTj, spe- 
cific enthalpy of the mixture; R, specific gas constant; v i , T i , frequency and tem- 
perature of ionization; B~(T), Planck function; • coefficient of absorption of a 
unit mass of atomic gas; T~, optical coordinate; Gj, cross section of photoioniza- 
tion from the ground state; I~, I~, spectral intensity of radiation propagated in 
the positive (+) and negativeV(-) directions of the ~ axis; qR~, qR, spectral and 
integrated fluxes of radiant energy; qRm, maximum value of radiant flux in the shock 
layer; ma, me, masses of atom and electron; naa, nea, rates of ionization by atomic 
and electron-atomic collision; 6 R, rate of photoionization; k, ratio of densities 
before and immediately after the shock wave; ~, ~, D A, coefficients of viscosity, 
thermal conductivity, and ambipolar diffusion, respectively; ~i, ~2, coefficients of 
viscosity in the first and second approximations; ~2, ~4,coefficients of thermal 
conductivity in the second and fourth approximations; Pr, Prandtls number; Sc, 
Schmidt number; 1 = ~/~s~s, dimensionless parameter. Indices: ~, s, w, gas param- 
eters in the incoming flow, immediately after the shock wave, and on the body, re- 
spectively. 
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